evernote

bashデバック

参照:http://shellscript.sunone.me/debug.html

JSP*タグリファレンス

http://tag.main.jp/index.html

システムモニタリングコマンド一覧

Linux
常識的なものからマイナーなものまで、Linuxでマシンの状態を調べるコマンドの一覧。
sar 一定間隔でCPU、コンテキストスイッチ、割り込み、ページング、デバイス、メモリ、スワップ、ネットワークなどあらゆる情報を表示
vmstat 一定間隔でプロセス、メモリ、スワップ、ディスクI/O、システム(割り込み、コンテキストスイッチ)、CPUの情報を表示
mpstat 一定間隔でCPUの詳細情報を表示
iostat 一定間隔で各種デバイス・ディスクの詳細なI/Oを表示
uptime 稼働時間、ユーザ数、ロードアベレージの表示
free メモリの使用状況表示
procinfo メモリ、CPU時間、ページ、スワップ、ディスク、割りこみ数などの統計を表示
/proc/* 任意のタイミングや間隔で任意の情報を取得したい場合は、無理にコマンドを組み合わせるより直接/proc以下の情報を取得するスクリプトを書く方が楽。
/proc/stat CPU時間の合計値など
/proc/loadavg ロードアベレージ
/proc/meminfo メモリの状態
/proc/diskstats ディスクI/Oの合計値
/proc/net/dev ネットワーク送受信の合計値
top 稼働時間、ユーザ数、ロードアベレージ、CPU、メモリの情報とプロセス毎の情報を継続的に表示
iotop システム全体のディスクI/Oとプロセス毎の詳細なディスクI/Oを継続的に表示
nethogs プロセス毎のネットワークI/Oの統計を継続的に表示
lsof 個々のプロセスが掴んでいるファイル・デバイス・ポートを表示
pmap プロセスが掴んでいるファイルとその詳細なメモリマップを表示
fuser ファイルやポート、ファイルシステムを利用しているプロセスやユーザの表示
ps aux プロセスを一覧表示
pstree プロセスをツリー表示

ディスク/ファイル

df 各ファイルシステムの容量やiノードの使用状況を表示
du ファイル・ディレクトリの使用状況を表示
stat ファイルの各種情報を任意のフォーマットで表示

ネットワーク

netstat ネットワークコネクションの情報を表示
nmap 開いているポートの調査
ifstat 一定間隔でデバイス毎のネットワークI/Oを表示
iftop 接続先毎のネットワークI/Oを継続的に表示

アプリケーション依存

smbstatus Sambaの利用状況表示
showmount NFSのマウント状況の表示
ftpwho FTPにアクセスしているユーザの表示
ftpcount FTPにアクセスしているユーザ数の表示
hostname カーネルの情報
uname -a カーネルの情報
lsmod ロードされているモジュールの情報
ifconfig 各ネットワークインターフェースのIPアドレス・MACアドレス・MTU等の表示
who 接続しているユーザの表示
id ユーザのUID,GID,グループなどの表示
ac ユーザの接続時間を表示する
   ネットワーク設定(vi /etc/sysconfig/network-scripts/ifcfg-eth0)

ハードウェア

lspci PCIデバイスの一覧を表示
lsusb USBデバイスの一覧を表示
lsscsi SCSIデバイスの一覧を表示
lshw 全ハードウェアの一覧を表示
ethtool ネットワークインターフェースのデバイス情報を表示
fdisk/sfdisk/cfdisk -l パーティション情報の表示
sensors (lm_sensors) 温度・ファン回転数等
cardctl PCカードの情報

X Window System

xev 入力デバイスからの入力情報の表示
xload 簡単なロードアベレージのGUI表示
glxinfo GLX拡張や、OpenGLレンダラの確認
xdpyinfo ディスプレイの情報表示
fc-list 利用可能なフォントの一覧
xfd フォントの確認
$ xfd -fa ‘VL ゴシック’
rc-update (Gentoo) ランレベル毎のデーモンの設定・確認
update-rc.d (Debian) ランレベル毎のデーモンの設定・確認
chkconfig (RedHat) ランレベル毎のデーモンの設定・確認
ldd 依存しているライブラリの表示
printenv 環境変数の表示
help シェルの組み込みコマンド
ブラウザショートカット
全画面表示 F11
ホームページに移動 Alt+Home
次のページに移動 Alt+→  Shift+Backspace
前のページに移動 Alt+←  Backspace
右のタブに移動 Ctrl+Tab   Ctrl+PageDown
左のタブに移動 Ctrl+Shift+Tab  Ctrl+PageUp
ページの先頭に移動する Home  Ctrl+Home
ページの末尾に移動する End  Ctrl+End
Webページの更新 F5  Ctrl+R
スーパーリロード Ctrl+F5  Ctrl+Shift+R Shift+F5
ページのダウンロードを中止 Esc
プライベート(シークレット)モード Ctrl+Shift+P Ctrl+Shift+N
履歴の消去 Ctrl+Shift+Delete
アドレスバーの文字列選択 Alt+D  Ctrl+L
直前に閉じたタブを開く Ctrl+Shift+T
現在のタブを閉じる Ctrl+W Ctrl+F4
お気に入りを開く Ctrl+I  Ctrl+Shift+B Alt+C
お気に入りの整理 Ctrl+B  Ctrl+Shift+O
履歴を開く Ctrl+H
ダウンロード履歴を開く Ctrl+J
新規ウィンドウ Ctrl+N
新しいタブを開く Ctrl+T
特定のタブを開く Ctrl+数字キー(1~8)
(アドレスバー選択時)新しいタブでウェブアドレスを開く Alt+Enter
タブ複製 Ctrl+K  Alt+D+Enter
一番右のタブに切り替える Ctrl+9
拡大する Ctrl+正符号(+)キー
縮小する Ctrl+負符号(-)キー
元の大きさにする Ctrl+0
検索窓にフォーカス Ctrl+E
検索後、F3で次へ Ctrl+K
お気に入りに追加 Ctrl+D
開発者ツールを開く F12(FireFoxはFirebugを入れてる場合)
Ctrl+Shift+I
ページのコード表示 Ctrl+U
カーソルブラウズ F7
タブとウィンドウのショートカット
新しいウィンドウを開く Ctrl+n
新しいウィンドウをシークレットモードで開く Ctrl+Shift+n
新しいタブを開いてそのタブに移動する Ctrl+t
最後に閉じたタブを開いてそのタブに移動する Ctrl+Shift+t
開いている次のタブに移動する Ctrl+Tab
開いている前のタブに移動する Ctrl+Shift+Tab  Ctrl+PgUp
特定のタブに移動する Ctrl+1~Ctrl+8
最後のタブに移動する Ctrl+9
ホームページを現在のタブで開く Alt+Home
現在のタブの閲覧履歴の中で前にあるページを開く Alt+左矢印
現在のタブの閲覧履歴の中で次にあるページを開く Alt+右矢印
現在のタブを閉じる Ctrl+w  Ctrl+F4
開いているすべてのタブとブラウザを閉じる Ctrl+Shift+w
現在のウィンドウを最小化する Alt+スペース+n
現在のウィンドウを最大化する Alt+スペース+x
GoogleChromeを終了する Ctrl+Shift+q  Alt+F4

便利ツール A5:SQL Mk-2の便利なショートカットをまとめてみた – 思考停止するな

最近SQL・データベースを扱うことが多いのですが、その際に手放すことができないレベルの超便利ツールのSQL実行ツールであるA5:SQL Mk-2というのがあります。 そのA5:SQL Mk-2の便利なショートカットをまとめてみました。 Ctrl + q SQL整形 Ctrl + g 条件を指定してテーブルを開く Ctr…

情報源: 便利ツール A5:SQL Mk-2の便利なショートカットをまとめてみた – 思考停止するな

ダミーデータ作成

https://a5m2.mmatsubara.com/help/TableEditor/dummy.html

Apache JMeter

・基本情報
http://www.techscore.com/tech/Java/ApacheJakarta/JMeter/index/

・統計レポートの見方
https://e-algorithm.xyz/jmeter/#jump4

・apache-jmeter-3.3\bin\jmeter-server.bat
に以下の設定を入れる

:port
call jmeter -Dserver_port=%SERVER_PORT% -s -j jmeter-server.log %JMETER_CMD_LINE_ARGS% 【-Dsun.net.inetaddr.ttl=0 -Dsun.net.inetaddr.negative.ttl=0】

詳細は
https://qiita.com/arai-wa/items/492d91d85a7473007e37

・実行bat sample
set time2=%time: =0%
set PREFIX=%date:~-10,4%%date:~-5,2%%date:~-2,2%%time2:~0,2%%time2:~3,2%%time2:~6,2%
cmd /k jmeter.bat -n -t .\FINAL\LJ53.jmx -j .\FINAL\result\%PREFIX%_jmeter.log -l .\FINAL\result\%PREFIX%_result.jtl

詳細は
https://qiita.com/tatesuke/items/827e6190753964e46814

windowsパフォーマンスモニター
http://www.atmarkit.co.jp/ait/articles/0910/30/news114.html

パチンコの勝ち方_確率的視点

1. パチンコは勝てるのか?

パチンコで稼いでいる(食っている)人は、確率を理解し、勝つべくして勝っています。

パチンコで勝てる理由

パチンコで勝っている人(パチプロ)は、偶然勝っているのではなく、
確率と期待値を理解しているのです。

まず断っておきたいのですが、投資系の話をする人でパチンコは勝てないなどと言ってる人は論外なのでそういう人の話は聞き流した方が身のためです。
パチンコで勝っている人(パチプロ)は運よく偶然勝っているのではなく、確率と期待値の事を理解し勝つべくして勝っているのです。
不思議な事に、学者の先生や高学歴の秀才達ほどパチンコは勝てないとはなから思い込んでいる方が多い様に思います。
当然、数学者の先生方は数学に関して誰よりも博識であるのは明白なのですが、なぜがパチンコなんて勝てるわけないとおっしゃいます。
私見ですがおそらく、学者の先生や高学歴の秀才達はおそらく人生でパチンコなどという低俗なものと関わることなく人生を歩んでこられたのではないかと思います。
だから確率や数学又は統計の知識に関しては誰よりも博識であるにもかかわらず、パチンコは勝てないとはなから思い込んでいるものと推定されます。
たしかにパチンコは低俗なマネーゲームです。そこは認めましょう。しかしながら、パチンコで勝てないという点に関してはただの思い込みであると反論させて頂きます。

パチンコで勝てない要因

  • パチンコなどという低俗なものに関わり合いたくない
  • 確率を理解していない
  • 確率を理解しているが実行できていない

パチンコで勝てない要因を大きく分けると上記の3つになるかと思います。

まず1つ目のパチンコに関わり合いたくないという方は、勝ちようがありません。先述しましたが、学者の先生や高学歴の秀才に多くみられる傾向にあります。これはもうしょうがないです。確かにパチンコなどと言う低俗なものに関わり合いたくない気持ちもよく分かりますので。

続いて2番目の確率の事を理解していないに当てはまる方は、確率の事を理解すれば勝てる様になる可能性があります。あくまで可能性ですけど。

そして一番多いのが3番目の確率の事を理解しているけれども実行できていない方です。ここに当てはまる方がパチンコで勝てない人の大多数を占めています。

よくあるのがボーダーを知っているのに勝てないという方です。これはパチンコの事を分かったつもりになっているだけで、パチンコというゲームの本質を理解していない事の現れです。

ちなみにパチプロでボーダーがいくらか重要視している人はまずいません。ボーダーなど知っているのは当たり前だし、それだけで食えるような甘い世界では無いからこそ、その他の部分で色々な技術介入をしているわけです。

1000円当たり22回回った!これは期待値プラスの台だ!と喜んで打ってる人はパチンコというゲームの本質を理解している気になっているだけのにわかです。いわゆる初心者ってやつです。そしてその初心者が大半をしめているのがパチンコというマネーゲームの世界です。

パチンコというマネーゲームはパチンコ屋の経費(電気代や人件費等)を引くと完全にマイナスサムゲームの世界です。一般的にパチンコの還元率は85%と言われています。

つまりパチンコというマネーゲームに参加した人全員から集めたお金の85%をプレイヤーで奪い合うマネーゲームであるという事をまず理解する必要があります。

という事でパチンコで実際食えるほど稼いでる人というのは優良店当たり数人程度でしょう。その数人がパチンコというマネーゲームでの数少ない本物の勝者という事になります。

パチンコで勝つのに難しい数式を覚える必要はありません。確率の収束と大数の法則だけ理解していれば十分です。
下記が当選確率1/100(理論値)のパチンコ台の当選確率と回転数の関係を表したものになります。

パチンコというマネーゲームの本質

パチンコはマイナスサムゲームであり、還元率は約85%とされています。
パチプロが勝つには、期待値を積み上げる戦略が必要です。

期待値の仕組み

回転数4000回を超えたあたりから理論確率(1/100)付近に収束している事が分かります。ちなみに、パチプロが一日ぶん回して2000回転程度ですので、4000回転は2日間フル稼働したものだと思って頂けたら宜しいかと思います。

つまり、1日フル稼働しただけでは理論確率に収束しきれないという事が分かります。ましてや会社帰りに数時間稼働しただけでは理論確率に収束するのはいつになるのやらという事が分かります。

理論確率より多く当たれば、運が良いといいますし、少なければ運が悪いといいます。確率が収束していない段階(回転数が少ない段階)の当選確率というのは運が支配している事も理解頂けるかと思います。

では実際パチンコでどうやって勝つの?

回転数を増やせば増やすほど理論確率(今回の場合1/100)に近づくという事は、どうすれば利益を出す事が出来るか考えてみて下さい。

ヒントはシステムトレードにおけるPF(プロフィットファクター)です。PFとは総利益÷総損失で表される数字です。

例えば勝率50%のシステムが利益を出すには、総損失が100万円とすると、それを超える総利益(100万円超え)を出す必要があります。つまり勝率50%の場合リスクリワードが1を超えないと利益が出ないという事です。

パチンコも一緒です。今回の場合最終的に1/100の確率に収束するという事は、100回転させるのに使った金額(総損失)より、当選した時にもらえる金額(総利益)の方が多ければ期待値はプラスであり、回せば回すほど期待値が積み上げられていきます。

とどのつまりパチンコで勝つというのはそういう事なのです。
あとはそれを実行できるか?

パチンコでは期待値を積み重ねていっても運の要素(偶然)によって実収支がマイナスになる事はよくあります。具体的には期待値100万稼いだけど実収支は50万しかなかったという事は多々あります。

さらに短いスパンの場合、例えば一日単位で見てみてみますと、期待値+3万出したけど実収支は-7万だったという事も多々あります。

この期待値と実収支の乖離は完全に運(偶然)です。むろんプラス側に行く時もあります。この様に偶然というのは避けることの出来ない普遍的な事だという事を理解する必要があります。

偶然のブレ(主に下振れ収支)が起こったとしても心を乱すことなく、ただ淡々と期待値を追いかけることが出来る人がパチプロという数%しかいないパチンコ界におけるマネーゲームの勝者なのです。

今年は期待値まで100万足りてないっ!って笑って話せるような人が確率の事を本当に理解し、実際行動に移すことが出来ている本物のパチプロと呼ばれる方々です。

理論確率の収束

当選確率と回転数の関係

パチンコで勝つ方法

パチンコで勝つには、期待値を理解し、実行することが求められます。以下のポイントを考慮しましょう:

  • 期待値がプラスの台を選ぶ。
  • 確率の収束と大数の法則を理解する。
  • 短期的な収支のブレに動じない。

期待値と実収支の乖離

期待値を積み重ねても、短期的な実収支はブレる可能性があります。これを理解し、冷静に行動できる人が本物のパチプロです。

まとめ

パチンコで勝つには確率を理解し、期待値を積み上げることが重要です。短期的な運に左右される場面があっても、確率の本質に基づき行動することで、勝利を収めることが可能です。

最大連敗数を求める方法

1. N回連続して負ける確率

勝率x%のシステムがN回連続して負ける確率は以下の様に求めることが出来ます。

N回連続して負ける確率 = ( 1 – 勝率x )^N回

例えば、勝率50%のシステムが5回連続して負ける確率を求めると、以下の通りです:

■5連敗する確率 = ( 1 – 50% )^5回 = 3.1%

■10回連敗する確率 = ( 1 – 50% )^10回 = 0.1%

2. 起こりうる最大連敗数

冒頭の計算式を展開して、1%の確率で起こりうる連敗数Nを以下のように求めます。

連敗数N = LOG( 1% , 1 – 勝率x )

例えば、勝率50%のシステムにおいて、1%の確率で起こりうる最大連敗数は以下の通りです:

■連敗数N = LOG( 1% , 1 – 50% ) = 6.6回

この式を用いることで、危険率αの場合に起こりうる連敗数Nを求めることができます。

3. エクセルのLOG関数について

エクセルのLOG関数は、”=LOG(真数, 底)”と入力するとその対数を返します。

  • 例1: LOG₂4 = LOG(4, 2) = 2 (2を2乗すると4になる)
  • 例2: LOG₂256 = LOG(256, 2) = 8 (2を8乗すると256になる)

4. 勝率別に起こりうる最大連敗数一覧

以下の表は、勝率別に起こりうる最大連敗数を危険率1%と0.0001%の2パターンで示しています。

システム勝率 最大連敗数 (α=1%) 最大連敗数 (α=0.0001%)
20% 21 62
25% 16 48
30% 13 39
35% 11 32
40% 9 27
45% 8 23
50% 7 20
55% 6 17
60% 5 15
65% 4 13
70% 4 11
75% 3 10
80% 3 9
85% 2 7
90% 2 6

5. 注意点(勝率の収束)

取引回数が200回未満の場合、勝率はシステム本来の値に収束していない可能性があります。勝率の収束については、“確率の収束と大数の法則”を参照してください。

6. 連敗数を予想してトレードにどう生かすか?

勝率が80%のシステムでも絶望的に運が悪ければ9連敗する可能性があります。この知識を持つことで、連敗が起きても冷静にトレードを継続できます。

期待値と確立

確率別の収束速度について

今回は確率別の収束速度について解説させて頂きます。

1. コインゲームの期待値

まずは直感でも分かり易い、コインゲームの期待値を考えてみたいと思います。

★コインゲームのルール
表が出たら200円貰える
裏が出たら100円支払う

このコインゲームの1プレイ当たりの期待値は幾らでしょうか?

答えは:
期待値= ( 1/2 × -100円 + 1/2 × +200円 ) × 1回 = +50円

2. サイコロゲームの期待値

次に、サイコロゲームの期待値を考えてみたいと思います。

★サイコロゲームのルール
1が出たら800円貰える
1以外が出たら100円支払う

答えは:
期待値= ( 5/6 × -100円 + 1/6 × +800円 ) × 1回 = +50円

3. ゲームに参加するべきか?

両ゲームとも1プレイ当たりの期待値はプラスですが、プレイ回数が重要です。最低でも200回以上プレイできる条件で参加するべきです。

なぜなら、試行回数が少ない内は運の要素が強く、理論値に収束しにくいためです。

4. 確率の収束と大数の法則

試行回数が増えるほど、理論値に収束する傾向があります。この現象を大数の法則と呼びます。

以下は勝率20%、40%、60%のシステムにおける試行回数と確率の収束を示すグラフです:

確率の収束と大数の法則

5. コインゲームとサイコロゲームのまとめ

1プレイ当たりの期待値がプラスで、かつ200回以上プレイできる条件を満たした場合のみ参加するべきです。

試行回数が少ない場合、偶然が収益に大きく影響を与えることを理解しましょう。

6. システムトレードにおける試行回数

取引回数が多いほどシステムの勝率は本来の値に収束します。200回未満のバックテスト結果は信頼性が低い可能性が高いです。

確率別の収束速度

1. ゲームのルール

今回は確率別の収束速度について解説させて頂きます。

2. コインゲームの期待値

まずは直感でも分かり易い、コインゲームの期待値を考えてみたいと思います。

★コインゲームのルール
表が出たら200円貰える
裏が出たら100円支払う

このコインゲームの1プレイ当たりの期待値は幾らでしょうか?

答えは、
期待値= ( 1/2 × -100円 + 1/2 × +200円 ) × 1回 = +50円 となります。

3. サイコロゲームの期待値

では次に、サイコロゲームの期待値を考えてみたいと思います。

★サイコロゲームのルール(※6面体のサイコロ)
1が出たら800円貰える
1以外が出たら100円支払う

このサイコロゲームの1プレイ当たりの期待値は幾らでしょうか?

答えは、
期待値= ( 5/6 × -100円 + 1/6 × +800円 ) × 1回 = +50円 となります。

4. ゲームに参加するべきか?

では、この期待値が+50円のコインゲーム又はサイコロゲームに参加するべきでしょうか?

答えは、プレイできる回数によるが正解となります。

両ゲームとも1プレイ当たりの期待値はプラスですが、プレイできる回数が例えば10回だけと決まっているのであれば参加するべきではありません。

5. 確率の収束と大数の法則

それでは実際、どの様に確率が収束していくのかをグラフで見てみましょう。

エクセルで勝率20%・40%・60%のシステムを作成し、各システムの勝率と試行回数の関係をグラフにして表したものがこちらです。(試行回数1,000回を実施)

確率の収束と大数の法則

6. まとめ

ゲームに参加するべきかどうかの判断は、まずそのゲームの1回当たりの期待値がプラスである事、そしてそのゲームを最低でも200プレイできる事、という2つの条件をクリアした場合のみ参加すれば良いという結論になります。

この様に確率というのは試行回数が少ないうちは偶然(運)が支配するものであることをご理解頂けたかと思います。